|
Klik på et bogstav for at se de begreber, der er forklaringer til.
- ACE-hæmmere: Angiotensin Converting Enzyme hæmmere. ACE-hæmmere nedsætter aktiviteten af renin-angiotensin-aldosteron-systemet ved at hæmme omdannelsen af angiotensin I til II, hvorved universel vasodilatation uden sympatikusaktivering indtræder og medfører fald i blodtrykket. Anvendes typisk mod forhøjet blodtryk og hjerteinsufficiens.
- Antacida: Stoffer der neutraliserer syre produceret i mavesækken. Eller: Syreneutraliserende stoffer, der medfører neutralisering af mavesækkens pH.
- AUC: Area under the curve. Det grafiske areal under en plasmakoncentrations-tids-kurve for et lægemiddel. AUC bruges til at beskrive, hvordan kroppen eksponeres for et givent lægemiddel og anvendes til at estimere biotilgængeligheden og clearence.
- BID: Medicinsk forkortelse for bis in die = to gange dagligt.
- Biotilgængelighed, F: Den del af et oralt administreret lægemiddel, der i forhold til en intravenøs dosis når det systemiske kredsløb. Omfatter også den hastighed, hvormed dette sker. Biotilgængelighed omfatter både absorptionen over tarmvæggen (absorptionen sensu strictiori) og en evt. førstepassagemetabolisme.
- Bredspektret antibiotika: Antibiotika med virkning på et bredt spektrum af mikroorganismer, i modsætning til smalspektrede antibiotika, der kun er virksomme over for specifikke typer af mikroorganismer.
- Clearance (Cl): Forholdet mellem et lægemiddels (eller andet stofs) eliminationshastighed (mængde per tidsenhed) og dets koncentration i plasma (eller blod).
Clearance er konstant, dvs. koncentrations-uafhængig, for stoffer, der elimineres efter en 1. ordens-reaktion. Clearance bestemmer sammen med fordelingsrummet halveringstiden. Clearance fra forskellige eliminationsorganer er additiv.
- Cmax: Den maksimale koncentration i plasma, der opnås efter lægemiddelindgift.
Ved i.v. indgift er Cmax lig Co, mens Cmax efter peroral indgift oftest først opnås efter 1-2 timer (tmax).
- CYP P450: Cytochrom-P450. Enzymsystem, som metaboliserer adskillige lægemidler via oxidering.
Oxidering udgør den kvantitativt dominerende eliminationsvej for lægemidler. CYP-enzymerne forekommer i særlig høj koncentration i leveren.
- Fald i clearance: Lægemidlet tager længere tid at få renset ud af kroppen.
- Halveringstid, t1/2: Den tid, det tager organismen (efter fordeling) at eliminere halvdelen af den tilbageværende mængde lægemiddel i kroppen.
Størrelsen er konstant og koncentrationsuafhængig for lægemidler med 1. ordens-elimination.
- Hepatisk: Vedr. leveren.
- Hypertension: Forhøjet blodtryk.
- Hypoglykæmi: Lavt blodsukker. Symptomer optræder ofte ved blodsukker lavere end 2,5 mmol/L.
- Hypotension: Lavt blodtryk.
- Hypothyreose: Nedsat funktion af skjoldbruskkirtlen som fører til nedsat dannelse af hormon (thyroxin) og dermed for lavt stofskifte.

- Inducerende lægemiddel: Når et lægemiddel forårsager øget omsætning af et andet lægemiddel via induktion af f.eks. CYP450.
- Induktion: Øget omsætning af et lægemiddel via induktion af f.eks. CYP450.
- INR: International normalized ratio. INR er en standardiseringsmetode til sammenligning af koagulationstider (protrombintider, PT). INR er således et mål for blodets evne til at koagulere.
INR har til formål at minimere forskellene mellem tromboplastinreagenser ved hjælp af en kalibreringsproces, hvor alle kommercielle tromboplastiner sammenlignes med et internationalt referencemateriale. INR beregnes således: INR=((Patient PT)/(Middel normal PT))^ISI , og fortæller dermed hvor lang koagulationstiden er i forhold til den normale koagulationstid.
- ISI: International Sensitivity Index. Protrombintid målt med forskellige tromboplastiner kan ikke sammenlignes direkte med hinanden, f.eks. fordi sensitiviteten over for koagulationsfaktorer kan variere. For at få koagulationstider, der er så sammenlignelige som muligt, godkendte Verdenssundhedsorganisationen (WHO) i 1983 en standard reference-tromboplastin. Alle producenter af tromboplastin skal kalibrere deres reagens over for WHOs standard. Den fundne værdi betegnes International Sensitivity Index (ISI), og bruges til at beregne INR.
- Iskæmi: Ophævet eller nedsat blodforsyning af et væv i forhold til dets behov.
- Isoenzymer: Forskellige udtryksformer for et enzym. Opstår pga. af forskellige allelle gener. Eksempler ses inden for det lægemiddelomsættende system CYP450, hvor isoenzymer f.eks. er 2D6, 3A4 og 2C9.
- Kasuistik: I lægevidenskab en offentliggjort beskrivelse af et enkelt eller få sygdomstilfælde (casus (lat.): ”tilfælde, sag”).
- Lipidsænkende lægemidler: Lægemidler, der sænker visse af blodets fedtstoffer – kolesterolsænkende.
- Metabolisme: Metabolisme eller stofskifte er en generel betegnelse for den biokemiske omsætning af kemiske forbindelser i den levende organisme og dens celler. Bruges synonymt med biotransformation.
- P-gp: Permeability glycoprotein. P-gp er et cellemembran-protein, som er tilstede i epithelceller i bl.a. tarm, lever og nyrer, hvor det transporterer fremmede substanser fra blodet og ud i hhv. tarmen, galdegange og nyretubuli.
- Plasma: Plasma er den fraktion af blodet, der ikke indeholder celler. Plasma indeholder forskellige næringsstoffer, hormoner, antistoffer, koagulationsfaktorer og salte. 95% af plasma består af vand.
- PO: Per os. Via munden.
- PN medicinering: Pro re nata medicinering. Medicin, der gives efter behov.
- PT: Protrombintid. Tiden, det tager plasma at koagulere, efter tilsætning af tromboplastin (også kaldet tissue factor). Protrombintiden bruges til at vurdere blodets koagulationsevne, og anvendes især til monitorering af antikoagulationsbehandling.
- qd: Quaque die. Hver dag.
- QID: Quater in die. Fire gange dagligt.
- Renal: (af lat. renalis), vedr. nyrerne.
- Respirationsdepression: Respirationsdepression (også kaldet hypoventilation) er når frekvensen eller dybden af respirationen er utiltrækkelig til at opretholde den nødvendige gasudveksling i lungerne.
- Serotonergt syndrom: Et symptomkompleks, der skyldes overstimulering i centralnervesystemet med serotonergt aktive substanser. Symptomerne er muskelrykninger, skælven, kvalme, diarré, sved og forvirring.
- Serum: Plasma uden koagulationsfaktorer.
- SID: Semel in die. Én gang dagligt.
- SmPC: SmPC står for Summary of Product Characteristics, og er det engelske udtryk for produktresumé.
- TID: Ter in die. Tre gange dagligt.
- tmax: Det tidspunkt, hvor den maksimale plasmakoncentration af et lægemiddel indtræder. Des hurtigere absorptionshastighed, des mindre tmax.
- Total clearance: Summen af hepatisk og renal clearance. I hvilken grad disse fraktioner bidrager afhænger af, om lægemidlet primært udskilles renalt eller også undergår fase I (f.eks. via CYP) og fase II (f.eks. glukuronidering) biotransformation i leveren.
- UGT: Uridine 5'-diphospho-glucuronosyltransferase, eller UDP- glucuronosyltransferase. Glucuronyltransferaser er enzymer, som foretager konjugering (glucuronidering) af mange lægemidler og lægemiddelmetabolitter, hvorved de omdannes til stoffer, der er lettere at udskille.
- Vasodilatation: Udvidelse af kar.
- Vasokonstriktion: Sammentrækning af kar.
|
|
Formålet med Interaktionsdatabasen er at gøre behandlingen med lægemidler mere effektiv og sikker, og fremme kvaliteten i patientbehandlingen, herunder bidrage til rationel farmakoterapi. Det har været til hensigt at udvikle et redskab, der er let at anvende i den kliniske hverdag og, hvor der på højt fagligt niveau er skabt konsensus om rekommandationer og beskrivelser af interaktioner mellem lægemidler.
Interaktionsdatabasens primære evidensgrundlag er offentligt publicerede, peer-reviewed original interaktionslitteratur (kliniske studier udført på mennesker og kasuistikker) publiceret i PubMed og Embase.
Der vil således kunne forekomme uoverensstemmelse mellem andre opslagsværker, som er opbygget efter andre principper og evidenskriterier.
|
|
Etableringen af Interaktionsdatabasen var et fælles projekt mellem Danmarks Apotekerforening, Den Almindelige Danske Lægeforening, Dansk Lægemiddel Information A/S og Institut for Rationel Farmakoterapi. En projektleder og 2 farmaceuter stod for opbygningen af databasen bistået af et fagligt videnskabeligt udvalg. Desuden har der været tilknyttet eksperter indenfor forskellige fagområder. Efter en årrække under Sundhedsstyrelsen overtog Lægemiddelstyrelsen i 2015 driften og vedligeholdelsen af databasen.
|
|
Vær opmærksom på, at alle anbefalinger på Interaktionsdatabasen.dk er vejledende.
Hjemmesiden giver desuden ikke oplysninger om bivirkninger ved hvert enkelt præparat. Her henviser vi til indlægssedlen i det enkelte præparat eller til Lægemiddelstyrelsens produktresuméer.
Der kan forekomme bivirkninger, du ikke kan finde informationer om her. Dem vil vi opfordre dig til at indberette til Lægemiddelstyrelsen. Det kan du gøre på:
|
|
I denne database er lægemiddelinteraktion defineret som en ændring i enten farmakodynamikken og/eller farmakokinetikken af et lægemiddel forårsaget af samtidig behandling med et andet lægemiddel.
Interaktionsdatabasen medtager farmakodynamiske interaktioner, der ikke er umiddelbart indlysende additive (fx med forskellig virkningsmekanisme), og som kan have væsentlig klinisk betydning.
Andre faktorer, som interagerer med eller ændrer lægemiddelvirkningen så som næringsmidler (f.eks. fødemidler og kosttilskud) og nydelsesmidler (f.eks. alkohol og tobak), er ikke medtaget. Dog er medtaget lægemiddelinteraktioner med grapefrugtjuice, tranebærjuice og visse naturlægemidler.
Interaktionsdatabasens primære evidensgrundlag er offentligt publicerede, peer-reviewed original interaktionslitteratur (kliniske studier udført på mennesker samt kasuistikker) publiceret i PubMed og Embase. Desuden er interaktioner hvor data er beskrevet i produktresuméer medtaget.
I Interaktionsdatabasen findes fem forskellige symboler:
- Det røde symbol (tommelfingeren, der peger nedad) betyder, at den pågældende præparatkombination bør undgås. Denne anbefaling bliver givet i tilfælde hvor det vurderes, at den kliniske betydning er udtalt, og hvor dosisjustering ikke er mulig, eller hvis der er ligeværdige alternativer til et eller begge af de interagerende stoffer. Det røde symbol vælges også i tilfælde, hvor der vurderes at være ringe dokumenteret effekt af et eller begge stoffer, (hvor anvendelse derfor ikke findes strengt nødvendig), f.eks. for visse naturlægemidler.
- Det gule symbol (den løftede pegefinger) betyder, at kombinationen kan anvendes under visse forholdsregler. Denne anbefaling gives i tilfælde, hvor det vurderes, at den kliniske betydning er moderat til udtalt, samtidig med at den negative kliniske effekt af interaktionen kan modvirkes, enten gennem ned- eller opjustering af dosis, eller ved at forskyde indtagelsestidspunktet for det ene præparat. Anbefalingen gives også, hvis det vurderes, at kombinationen kan anvendes under forudsætning af øget opmærksomhed på effekt og/eller bivirkninger.
- Det grønne symbol (tommelfingeren, der peger opad) betyder, at kombinationen kan anvendes. Denne anbefaling gives i tilfælde, hvor det vurderes, at den kliniske betydning er uvæsentlig eller ikke tilstede.
- Det blå symbol (udråbstegnet) fremkommer i tilfælde, hvor der søges på et specifikt præparat eller en præparatkombination, som ikke findes beskrevet i Interaktionsdatabasen, men hvor der findes andre beskrevne interaktioner mellem stoffer i stofgruppen, som muligvis kan være relevante for søgningen.
- Det grå symbol (spørgsmålstegnet) fremkommer i tilfælde, hvor der er søgt på et præparat eller en præparatkombination, som (endnu) ikke er beskrevet i Interaktionsdatabasen, og hvor der heller ikke findes beskrivelser af andre præparatkombinationer mellem de to stofgrupper. En manglende beskrivelse er ensbetydende med, at Lægemiddelstyrelsen ikke har kendskab til videnskabelige undersøgelser, der undersøger en interaktion mellem den pågældende præparatkombination, og heller ikke til kasuistiske beskrivelser af en mulig interaktion. Der kan også være tale om en kombination, hvor der ikke kan drages konklusioner på baggrund af nuværende viden.
Opdatering af databasens faglige indhold foregår via litteratursøgninger som leveres via Det Kongelige Bibliotek. Litteratursøgningerne er struktureret efter veldefinerede søgekriterier og bliver løbende evalueret. Endvidere foretages yderligere håndsøgning i referencelister som kvalitetssikring af litteratursøgningerne.
Databasen bliver opdateret løbende.
Lægemiddelstyrelsens enhed Regulatorisk & Generel Medicin står for opdatering og vedligehold af Interaktionsdatabasens indhold.
Vedligehold og opdatering af databasen foretages af den faglige arbejdsgruppe, som består af 1 akademisk medarbejder og 2 studerende.
Arbejdsgruppen samarbejder med en deltidsansat speciallæge i klinisk farmakologi omkring den kliniske vurdering af lægemiddelinteraktionerne.
Interaktionsdatabasen er et opslagsværktøj, der beskriver evidensbaserede interaktioner, det vil sige interaktioner, der er dokumenteret ved publicerede kliniske studier og/eller kasuistikker. Der vil således kunne forekomme uoverensstemmelse mellem andre opslagsværker, som er opbygget efter andre principper og evidenskriterier.
Der inkluderes kun interaktioner fra offentligt publicerede, peer-reviewed original interaktionslitteratur (kliniske studier udført på mennesker samt kasuistikker) publiceret i PubMed og Embase. Desuden er interaktioner hvor data er beskrevet i produktresuméer også medtaget. Det tilstræbes at databasen opdateres snarest efter publicering, men der kan forekomme forsinkelser.
Interaktionsdatabasen beskriver interaktioner for markedsførte lægemidler, naturlægemidler samt stærke vitaminer og mineraler. I interaktionsbeskrivelserne skelnes som udgangspunkt ikke mellem forskellige dispenseringsformer. For udvalgte lægemidler skelnes dog mellem dermatologiske og systemiske formuleringer. Handelsnavnene for stærke vitaminer og mineraler, naturlægemidler samt lægemidler som ikke figurerer på medicinpriser.dk (dvs. SAD præparater) kan ikke findes på interaktionsdatabasen.
Interaktionsdatabasen omhandler ikke kosttilskud, vacciner, parenteral ernæring, elektrolytvæsker, lægemidler uden systemisk effekt og priktest (ALK).
Ja, du kan slå både lægemidler, naturlægemidler, stærke vitaminer, mineraler og enkelte frugtjuice op.
Naturlægemidler er en særlig gruppe lægemidler, der typisk indeholder tørrede planter eller plantedele, udtræk af planter eller andre naturligt forekommende bestanddele. Naturlægemidler er i lovgivningen defineret som "lægemidler, hvis indholdsstoffer udelukkende er naturligt forekommende stoffer i koncentrationer, der ikke er væsentligt større end dem, hvori de forekommer i naturen". Naturlægemidler skal godkendes af Lægemiddelstyrelsen inden de må sælges.
Stærke vitaminer og mineraler er en gruppe lægemidler, hvis indholdsstoffer udelukkende er vitaminer og/eller mineraler, og hvor indholdet af vitamin eller mineral er væsentligt højere end det normale døgnbehov hos voksne mennesker. Stærke vitaminer og mineraler kan kun godkendes til at forebygge og helbrede såkaldte mangeltilstande (og altså ikke til at behandle sygdomme). Stærke vitaminer og mineraler må kun sælges i Danmark, hvis de er godkendt af Lægemiddelstyrelsen.
Ja, du kan søge på så mange lægemidler/indholdsstoffer, du ønsker samtidig. Det gør du ved at bruge søgeboksen til højre på forsiden med overskriften ”Søg på flere præparater i kombination”. Her kan du tilføje flere felter med knappen nederst. Hvis du søger på kombinationer med mere end to slags lægemidler/indholdsstoffer, skal du være opmærksom på, at du ikke kun får ét resultat, men et antal 1+1 kombinationer. Et eksempel: Hvis du søger på samtidig brug af en p-pille, et blodtrykssænkende lægemiddel og et sovemiddel, får du 3 mulige resultater:
A: kombinationen af p-pille og blodtrykssænkende lægemiddel
B: kombinationen af p-pille og sovemiddel
C: kombinationen af blodtrykssænkende lægemiddel og sovemiddel
Du får de parvise kombinationer, der er videnskabeligt undersøgt.
Nej, du skal ikke angive dosis (500mg paracetamol) eller interval (2xdaglig), når du skal søge på et præparat eller indholdsstof. Det er kun selve præparatnavnet eller navnet på indholdsstoffet, du skal skrive. Vælg eventuelt bare navnet fra listen.
Det er desværre sådan, at der indtil videre kun kan søges på indholdsstof, når det gælder naturlægemidler.
Dette sker, når du søger på et kombinationspræparat. Når du søger på et kombinationspræparat, får du præsenteret et resultat for hvert af disse indholdsstoffer.
Indholdet i databasen er resultatet af grundige vurderinger af videnskabelige artikler og konklusioner fra humane forsøg. Hvis du kun får én interaktion på trods af, at du har indtastet flere præparater eller indholdsstoffer, skyldes det, at der endnu ikke er beskrevet (eller fundet) interaktioner af de andre indholdsstoffer i den videnskabelige litteratur.
På Lægemiddelstyrelsens hjemmeside, og i månedsbladet Rationel Farmakoterapi, juni 2015.
|
|
Lægemiddelstyrelsen
Axel Heides Gade 1
2300 København S
Tlf.nr 44 88 95 95
|
|
|
 |
 |
Interaktionsoplysninger
|
|
|
|
 |
 |
 |
1. Præparat: Venlafaxin "2care4" - Aktivt indholdsstof: venlafaxin |


 |
 |
 |
Interaktionsoplysninger for ketoconazol og venlafaxin |
 |

Dosisreduktion af venlafaxin kan blive nødvendig afhængig af bivirkninger/koncentrationsmålinger.
Ketoconazol (flerdosis) øger AUC og Cmax for en enkelt dosis venlafaxin med ca. 30-35%, mens t1/2 forblev uændret. Mekanismen er ikke klarlagt.
mulig
dokumenteret
andre antidepressiva agomelatin, duloxetin, mianserin, mirtazapin, nefazodon, perikon, reboxetin, venlafaxin, vortioxetin antimycotica til systemisk brug clotrimazol, fluconazol, isavuconazol, itraconazol, ketoconazol, miconazol, posaconazol, voriconazol
Azolerne hæmmer i varierende grad CYP3A4. Da de forskellige antidepressiva er meget forskellige, er det ikke muligt at beskrive en klasseeffekt. Der er i litteraturen ikke lokaliseret yderligere referencer omhandlende interaktioner med serotonin- og noradrenalin præparater samt azoler.
Litteraturgennemgang - Vis
Reboxetin og ketoconazol I et farmakokinetisk interaktionsstudie omhandlende 11 raske forsøgspersoner øgedes AUC af en enkeltdosis reboxetin med ca. 50 % og clearance blev nedsat med ca. 30% efter tillæg af en enkeltdosis ketoconazol. Der var ingen effekt på Cmax af reboxetin . Der blev ikke observeret ændring i bivirkningerne til reboxetin, Herman BD, Fleishaker JC et al, 1999. Venlafaxin og ketoconazol Ved samtidig indgift af flerdosis ketoconazol og en enkelt dosis venlafaxin hos 21 raske forsøgspersoner (Lindh JD, Annas A et al, 2003) observeres følgende ændringer i venlafaxins kinetik: AUC steg med 36%, Cmax steg med 32%, mens t1/2 var uændret. Venlafaxin og voriconazol Et studie med 12 raske forsøgspersoner undersøgte voriconazols effekt på venlafaxin, Hynninen VV, Olkkola KT et al, 2008. Forsøgspersonerne fik først voriconazol og herefter 75 mg venlafaxin. Efterfølgende kunne der måles en stigning af AUC for venlafaxins aktive metabolit på ca. 31%, mens der ikke var signifikant ændring af øvrige parametre (AUC, Cmax, t½ og tmax). Mekanismen er sandsynligvis små bidrag fra hæmning af CYP3A4, CYP2C9 og CYP2C19. Vortioxetin og ketoconazol/fluconazol Ifølge SPC for Brintellix steg vortioxetin AUC med en faktor 1,3 og 1,5 når administreret sammen med hhv. ketoconazol (400mg/dag i 6 dage) eller fluconazol (200mg/dag i 6 dage). Ketoconazol er en kendt CYP3A4/5- og P-glykoprotein-hæmmer, mens fluconazol hæmmer CYP2C9-, CYP2C19- og CYP3A4. SPC for Brintellex, 2015 Supplerende litteratur: Albengres E, Le Louet H et al, 1998.
Lindh JD;Annas A;Meurling L;Dahl ML;AL Shurbaji A, Eur J Clin Pharmacol, 2003, 59:401-406; Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine OBJECTIVE. To study the influence of CYP3A4 inhibition by ketoconazole on the disposition of venlafaxine in individuals with different CYP2D6 pheno- and genotypes. METHODS. In an open two-phase study, 21 healthy volunteers with known CYP2D6 pheno- and genotype [14 extensive metabolisers (EMs), 7 poor metabolisers (PMs)] were given a single oral dose of venlafaxine (50 mg to EMs and 25 mg to PMs). Plasma and urine levels of venlafaxine and its three metabolites were measured and the pharmacokinetics of venlafaxine were determined. After a 2-week washout period, subjects were treated for 2 days with ketoconazole (100 mg twice daily) starting 1 day before the administration of venlafaxine; and the same parameters as for the administration of venlafaxine only were measured. RESULTS. Data were evaluated from 20 subjects (14 EMs and 6 PMs) who completed the study. The dose-corrected AUC of venlafaxine was on average 2.3 times higher ( P<0.01) and that of its active metabolite O-desmethylvenlafaxine 3.4 times lower ( P<0.0001) in PMs than EMs. There was a good correlation between the debrisoquine metabolic ratio and the ratio between the AUC of venlafaxine and that of O-desmethylvenlafaxine ( Rs=0.93, P<0.002). The majority of subjects showed higher plasma levels of venlafaxine and O-desmethylvenlafaxine upon co-administration of ketoconazole. AUC of venlafaxine significantly increased by 36% and that of O-desmethylvenlafaxine by 26% ( P<0.01). C(max) values increased by 32% and 18%, respectively. The elimination half-life of venlafaxine was unaltered. Three of the PMs displayed marked increases in AUC (81, 126 and 206%) and C(max) (60, 72, 119%) of venlafaxine while the other three showed small or no changes. CONCLUSIONS. Ketoconazole consistently affected the disposition of venlafaxine in EMs of debrisoquine while the response in PMs was erratic. The precise mechanisms underlying this interaction remain to be elucidated  Hynninen VV; Olkkola KT; Bertilsson L; Kurkinen K; Neuvonen PJ; Laine K, Clin Pharmacol Ther, 2008, 83(2): 342-348-348; Effect of terbinafine and voriconazole on the pharmacokinetics of the antidepressant venlafaxine This study investigated the effect of terbinafine and voriconazole on the pharmacokinetics of venlafaxine in healthy volunteers. Plasma concentrations of venlafaxine and O-desmethylvenlafaxine (ODV) were measured after ingestion of 75 mg venlafaxine without pretreatment (control), after terbinafine pretreatment, or after voriconazole pretreatment. During the terbinafine phase, the area under the plasma concentration-time curve (AUC((0-[infinity]))) of venlafaxine was on average 490% (P<0.001) and that of ODV 57% (P<0.001) of the corresponding control value. Terbinafine decreased the AUC((0-[infinity])) ratio of ODV over venlafaxine by 82% (P<0.001). Voriconazole slightly increased the sum of AUC((0-[infinity])) of venlafaxine plus AUC ((0-[infinity])) of ODV (active moiety) by 31% (P<0.001). The most likely mechanism for the interaction between terbinafine and venlafaxine is the inhibition of CYP2D6-mediated O-demethylation of venlafaxine, whereas the minor effects of voriconazole are probably due to the inhibition of CYP3A4-, CYP2C9-, or CYP2C19-mediated metabolism of venlafaxine. copyright 2007 American Society for Clinical Pharmacology and Therapeutics  Herman BD;Fleishaker JC;Brown MT, Clin Pharmacol Ther, 1999, 66:374-379; Ketoconazole inhibits the clearance of the enantiomers of the antidepressant reboxetine in humans BACKGROUND: Ketoconazole is a potent inhibitor of the cytochrome P450 3A4 enzyme. Reboxetine, a selective norepinephrine reuptake inhibitor, is metabolized by cytochrome P450 3A4. The potential interaction of reboxetine with this representative from the azole derivative class was examined. METHODS: Eleven healthy volunteers received (1) 4 mg reboxetine orally on the second day of a 5-day regimen of 200 mg ketoconazole once daily and (2) 4 mg reboxetine orally in a crossover design. Plasma concentrations of reboxetine enantiomers [R,R(-)-reboxetine and the more active S,S(+)-reboxetine] were measured by high-performance liquid chromatography-tandem mass spectrometry. Effects of ketoconazole on enantiomer pharmacokinetics were assessed by ANOVA. RESULTS: Ketoconazole increased R,R(-)-reboxetine and S,S(+)-reboxetine mean area under the plasma concentration-time curves (AUC) by 58% and 43%, respectively (P < .02). Oral clearance of both enantiomers was consequently decreased 34% and 24%, respectively, by ketoconazole (P < .005). Ketoconazole did not significantly affect maximal plasma concentrations (P > .1). Mean terminal half-life after administration of ketoconazole (21.5 hours and 18.9 hours) was significantly longer than after reboxetine alone (14.8 hours and 14.4 hours; P < or = .005). The AUC ratio for R,R(-)-reboxetine to S,S(+)-reboxetine was reduced by ketoconazole administration (2.76 after ketoconazole versus 2.39; P < .003). CONCLUSION: Ketoconazole decreases clearance of both reboxetine enantiomers. Although the adverse effect profile for reboxetine was not altered by ketoconazole, the results of this study suggest that caution should be used and that a reduction in reboxetine dose should be considered when the two are coadministered  SPC for Brintellex, Produktresume, 2015; Lundbeck http://www.ema.europa.eu/docs/da_DK/document_library/EPAR_-_Product_Information/human/002717/WC500159449.pdf Albengres E;Le Louet H;Tillement JP, Drug Saf, 1998, 18:83-97; Systemic antifungal agents. Drug interactions of clinical significance There are 3 main classes of systemic antifungals: the polyene macrolides (e.g. amphotericin B), the azoles (e.g. the imidazoles ketoconazole and miconazole and the triazoles itraconazole and fluconazole) and the allylamines (e.g. terbinafine). Other systemic antifungals include griseofulvin and flucytosine. Most drug-drug interactions involving systemic antifungals have negative consequences. The interactions of amphotericin B, flucytosine, griseofulvin, terbinafine and azole antifungals can be divided into the following categories: (i) additive dangerous interactions; (ii) modifications of antifungal kinetics by other drugs; and (iii) modifications of the kinetics of other drugs by antifungals. Amphotericin B and flucytosine mainly interact with other agents pharmacodynamically. Clinically important drug interactions with amphotericin B cause nephrotoxicity, hypokalaemia and blood dyscrasias. The most important drug interaction of flucytosine occurs with myelotoxic agents. Hypokalaemia can precipitate the long QT syndrome, as well as potentially lethal ventricular arrhythmias like torsade de pointes. Synergism is likely to occur when either QT interval-modifying drugs (e.g. terfenadine and astemizole) and drugs that induce hypokalaemia (e.g. amphotericin B) are coadministered. Induction and inhibition of cytochrome P450 enzymes at hepatic and extrahepatic sites are the mechanisms that underlie the most serious pharmacokinetic drug interactions of the azole antifungals. These agents have been shown to notably decrease the catabolism of numerous drugs: histamine H1 receptor antagonists, warfarin, cyclosporin, tacrolimus, digoxin, felodipine, lovastatin, midazolam, triazolam, methylprednisolone, glibenclamide (glyburide), phenytoin, rifabutin, ritonavir, saquinavir, nevirapine and nortriptyline. Non-antifungal drugs like carbamazepine, phenobarbital (phenobarbitone), phenytoin and rifampicin (rifampin) can induce the metabolism of azole antifungals. The bioavailability of ketoconazole and itraconazole is also reduced by drugs that increase gastric pH, such as H2 receptor antagonists, proton pump inhibitors, sucralfate and didanosine. Griseofulvin is an enzymatic inducer of coumarin-like drugs and estrogens, whereas terbinafine seems to have a low potential for drug interactions. Despite important advances in our understanding of the mechanisms underlying pharmacokinetic drug interactions during the 1990s, at this time they still remain difficult to predict in terms of magnitude in individual patients. This is because of the large interindividual and intraindividual variations in the catalytic activity of those metabolising enzymes that can either be induced or inhibited by various drugs. Notwithstanding these variations, increasing clinical experience is allowing pharmacokinetic interactions to be used to advantage in order to improve the tolerability of some drugs, as recently exemplified by the use of a fixed combination of ketoconazole and cyclosporin

|
 |
|
|
|
|